Towards Resilient Critical Infrastructures: Application of Type-2 Fuzzy Logic in Embedded Network Security Cyber Sensor

Ondrej Linda, Todd Vollmer, Milos Manic, Jim Alves-Foss

Date: 8/9/2011

University of Idaho

Presentation Outline

- Overview of Previous Work and Fuzzy Logic
- Embedded Network Security Cyber Sensor
- Online Learning Algorithm for Anomaly Detection
- Experimental Results
- Conclusion

Cyber-Security of Critical Infrastructures

- Protection against cyber attacks and cyber terrorism
- Critical infrastructures (e.g. nuclear power plants, SCADA) are vulnerable
- Development of System Protection Cyber Sensor
 - Easy to deploy
 - Low Cost
 - Increased State-Awareness

Previous Work

- Neural Network Based Intrusion Detection System for Critical Infrastructures
 - offline training, not suitable for embedded cyber sensor

- Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor
 - Automatic fuzzy rule construction using one-pass online clustering algorithm
 - Suitable for constrained computational resources of embedded devices

Current Work

- Extending the previous work
 - Using Interval Type-2 Fuzzy Logic for robust anomaly detection and increased cyber-security state awareness.
 - Computationally efficient algorithm for the low-cost embedded network security cyber sensor

Type-1 Fuzzy Logic Controller (FLC)

- T1 FLC
 - Set of linguistic rules
 - Fuzzy sets describe ambiguous, imprecise words

Fuzzy Linguistic Rules

Rule R_k : **IF** x_l is A_1^k **AND** ... **AND** x_n is A_n^k **THEN** y_k is B^k

T1 Fuzzy Logic System

Rule Firing Strength (minimum t-norm)

$$\mu_{R_k}(\vec{x}) = \min_{i=1, n} \{ \mu_{A_i^k}(x_i) \}$$

Defuzzification (centroid defuzzifier)

$$y = \frac{\sum_{i=1}^{N} y_{i} \mu_{B}(y_{i})}{\sum_{i=1}^{N} \mu_{B}(y_{i})}$$

Interval Type-2 FLC

- T1 FLC performance is susceptible to dynamic uncertainty
- IT2 FLC provides better handling of dynamic uncertainties
 - Implements additional dimension of uncertainty secondary grade
 - Interval T2 fuzzy sets are described by footprint of uncertainty FOU
 - FOU is bounded by upper and lower membership function

$$FOU(\widetilde{A}) = \bigcup_{\forall x \in X} (\underline{\mu}_{\widetilde{A}}(x), \overline{\mu}_{\widetilde{A}}(x))$$

T2 Fuzzy Logic System

Cyber-Sensor

Embedded Network Security
 Cyber Sensor

- Deployment at low level before the critical component (e.g. PLC)
 - Requirements of low cost.
- Tofino embedded network security device
 - Manufactured by Byres Security Inc.
 - Pre-emptive threat detection, termination and reporting
 - Specifically tailored for the needs of SCADA and industrial control systems
 - Intel IXP425 processor, 533MHz, 64MB DRAM

Network Data Acquisition

- Experimental test-bed
 - Represents various aspects of operational control structure
 - RSView32 integrated component monitoring interface
 - Allen-Bradley MicroLogix 1100 PLC
 - Sub-systems with buttons, potential meters fans, lights
 - Linux laptop with tcpdump software for network traffic capturing and monitoring
 - Experimental data contains normal behavior and simulated intrusion attempts

Network Data Preprocessing

 Uses sliding window to compute statistical properties of a sequence of packets:

 Examples of extracted attributes: # IPs, Avg. time, # Protocols, # Flag Codes, # 0 Win. Size, # 0 Data Len., Avg. Win. Size, Avg. Data Len.

Online Learning Algorithm

- Low-memory and computational time requirements
- Based on one-pass nearest neighbor clustering

Input:

$$X = \{\vec{x}_1, ..., \vec{x}_N\}, \vec{x}_i \in \Re^n$$

Output: Set of Clusters

$$P_i = \{\vec{c}_i, w_i\}, \vec{c}_i \in \mathfrak{R}^n, w_i \in \mathfrak{R}^+$$

- 1) Initialize cluster P_1 at position of pattern \vec{x}_1
- 2) Iterate through all patterns and find the nearest cluster:

$$dist(\vec{c}_a, \vec{x}_i) = \min_j \sqrt{(c_j^1 - x_i^1)^2 + ... + (c_j^n - x_i^n)^2}, j = 1...C$$

• 3) If $dist(\vec{c}_a, \vec{x}_i) \le rad$ then add pattern \vec{x}_i to cluster P_a

$$\vec{c}_a = \frac{w_a \vec{c}_a + \vec{x}_i}{w_a + 1}, \ w_a = w_a + 1$$

Else, create new cluster at position of pattern \vec{x}_i

Online Learning Algorithm

- Online network behavior patterns extraction
 - Apply the Nearest Neighbor clustering to the incoming pre-processed stream of packets
 - Also accumulate statistical information about the patterns assigned to each cluster
- Cluster attributes:

$$P_{i} = \{\vec{c}_{i}, w_{i}, M_{i}\}, \ \vec{c}_{i} = \{c_{i}^{1}, \dots, c_{i}^{n}\}, \ M_{i} = \begin{vmatrix} c_{i,1}^{U} & \cdots & c_{i,n}^{U} \\ c_{i,1}^{L} & \cdots & c_{i,n}^{L} \end{vmatrix}$$

Modified cluster update rule for the Nearest Neighbor clustering:

$$\vec{c}_a = \frac{w_a \vec{c}_a + \vec{x}_i}{w_a + 1}, \ w_a = w_a + 1$$

$$\overline{c}_i^j = \max(x_i^j, \overline{c}_i^j), \ \underline{c}_i^j = \min(x_i^j, \underline{c}_i^j) \quad j = 1...n$$

IT2 Fuzzy Rules Extraction

During the testing phase, individual clusters are used to initialize IT2 fuzzy rules:

Rule
$$R_k$$
: **IF** x_l is \widetilde{A}_1^k **AND** ... **AND** x_n is \widetilde{A}_n^k **THEN** y_k is \widetilde{B}^k

- Non-symmetric Gaussian IT2 fuzzy set:
 - Uses an interval fuzziness parameter $[\alpha, \overline{\alpha}]$

$$\begin{split} & m_{i,j} = c_{i,j} \\ & [\underline{\mathcal{S}}_{i,j}^{U}, \overline{\mathcal{S}}_{i,j}^{U}] = \left[\underline{\alpha} \left(c_{i,j}^{U} - c_{i,j}\right), \overline{\alpha} \left(c_{i,j}^{U} - c_{i,j}\right)\right] \\ & [\underline{\mathcal{S}}_{i,j}^{L}, \overline{\mathcal{S}}_{i,j}^{L}] = \left[\underline{\alpha} \left(c_{i,j} - c_{i,j}^{L}\right), \overline{\alpha} \left(c_{i,j} - c_{i,j}^{L}\right)\right] \end{split}$$

 Rules describe the similarity of the observed behavior and the normal behavior. Hence, the output of each rule is its own firing strength

IT2 Fuzzy Rule Based Anomaly Detection

 Uses IT2 fuzzy logic inference with the extracted set of normal network behavior fuzzy rules:

Rule
$$R_k$$
: IF x_l is \widetilde{A}_1^k AND ... AND x_n is \widetilde{A}_n^k THEN y_k is \widetilde{B}^k

- Degree of Firing: $\underline{\mu}_{R_i}(\vec{x}) = \min_{j=1..n} \{ \underline{\mu}_{\widetilde{A}_i^j}(x_j) \} \quad \overline{\mu}_{R_i}(\vec{x}) = \min_{j=1..n} \{ \overline{\mu}_{\widetilde{A}_i^j}(x_j) \}$
- Aggregate rule outputs: $\underline{y}(\vec{x}) = \max_{i=1...C} \underline{\mu}_{R_i}(\vec{x})$ $\bar{y}(\vec{x}) = \max_{i=1...C} \overline{\mu}_{R_i}(\vec{x})$
- Defuzzified Output: $y = \frac{(\underline{y}(\vec{x}) + \overline{y}(\vec{x}))}{2}$
- Output Decision: If $\underline{y}(\vec{x}) > \text{threshold Then Anomaly behavior.}$

Else If $\overline{y}(\vec{x}) < \text{threshold}$ **Then** Normal behavior.

Else If $y(\vec{x}) \le \text{threshold} \le \overline{y}(\vec{x})$ **Then** Uncertain behavior.

Experimental Results

- Training data 6 datasets with 60,661 packets of normal behavior
- Testing data 10 datasets with 583,637 packets of abnormal behavior

Experimental Results

- 132 fuzzy rules generated
- 0% false negative rate and 1.3% false positive rate

Datasets	Number of Packets	Classification Rate	False Positives
Data 1	16,860	99.226 %	0.857%
Data 2	11,794	99.276 %	0.840 %
Data 3	21,904	99.327 %	0.727 %
Data 4	18,225	99.321 %	0.809 %
Data 5	34,586	99.385 %	1.372 %
Data 6	113,705	98.277 %	1.772 %
Data 7	113,557	98.339 %	1.804 %
Data 8	65,018	98.438 %	1.606 %
Data 9	69,959	98.521 %	1.519 %
Data 10	118,029	98.259 %	1.791 %
Sum / Average	583,637	98.837 %	1.310 %

Experimental Results

Improved Uncertainty handling

Conclusion

- Developed an IT2 FLS based anomaly detection algorithm for embedded network security cyber sensor.
- The algorithm extracts IT2 fuzzy rules using an adapted version of the online nearest neighbor clustering algorithm directly from the stream of packets.
- The IT2 FLS offers improved cyber-security state awareness due to improved uncertainty handling by IT2 FSs.

Acknowledgement

 This work was supported by the U.S. Department of Energy under DOE Idaho Operations Office Contract DE-AC07-05ID14517, performed as part of the Instrumentation, Control, and Intelligent Systems Distinctive Signature (ICIS) of Idaho National Laboratory.